Study on a Classification Model of Data Stream based on Concept Drift

نویسنده

  • Gao Weiwei
چکیده

In the data stream classification process, in addition to the solution of massive and realtime data stream, the dynamic changes of the need to focus and study. From the angle of detecting concept drift, according to the dynamic characteristics of the data stream. This paper proposes a new classification method for data stream based on the combined use of concept drift detection and classification model. The data stream classification model can’t adapt to concept drift problem to solve. Before the model classification, the use of information entropy to judge the data block concept drift, the concept of history to have appeared, the use of a classifier pool mechanism to save it, to makes the classification model has stronger resistance to concept drift.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Concept Drift in Data Stream Using Semi-Supervised Classification

Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...

متن کامل

Coal Mine Safety Evaluation Method Based on Incomplete Labeled Data Stream Classification

Monitoring data in coal mine is essentially data stream, and missing coal mine monitoring data is caused by harsh coal mine environment, therefore coal mine safety evaluation can be seen as incomplete labeled data stream classification. The method is proposed for unlabeled data and concept drift in incomplete labeled data stream in this paper that uses semi-supervised learning method based on k...

متن کامل

Feature Based Data Stream Classification (FBDC) and Novel Class Detection

Data stream classification poses many challenges to the data mining community. Here this paper solves all the challenges such as infinite length, concept-drift, concept-evolution, and feature-evolution. Since a data stream is theoretically infinite in length, it is impractical to store and use all the historical data for training. Concept-drift is a common phenomenon in data streams, which occu...

متن کامل

Detecting Concept Drift in Classification Over Streaming Graphs

Detecting concept drift in data streams has been widely studied in the data mining community. Conventional drift detection methods use classifiers’ outputs (e.g., classification accuracy, error rate) as indicators to signal concept changes. As a result, their performance greatly depends on the chosen classifiers. However, there is little work on addressing concept drift in graph-structured data...

متن کامل

Concept Drift Detection and Model Selection with Simulated Recurrence and Ensembles of Statistical Detectors

The paper presents a concept drift detection method for unsupervised learning which takes into consideration the prior knowledge to select the most appropriate classification model. The prior knowledge carries information about the data distribution patterns that reflect different concepts, which may occur in the data stream. The presented method serves as a temporary solution for a classificat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014